1,621 research outputs found

    Rapid assembly of highly-functionalised difluorinated cyclooctenones via ring-closing metathesis

    Get PDF
    Building block methodology from trifluoroethanol and ringclosing metathesis using a Fürstner modification of Grubbs’ conditions allows the rapid synthesis of novel difluorinated cyclooctenones

    Molecular, isotopic and <i>in situ</i> analytical approaches to the study of meteoritic organic material

    Get PDF
    Organic materials isolated from carbonaceous meteorites provide us with a record of pre-biotic chemistry in the early Solar System. Molecular, isotopic and in situ studies of these materials suggest that a number of extraterrestrial environments have contributed to the inventory of organic matter in the early Solar System including interstellar space, the Solar nebula and meteorite parent bodies. There are several difficulties that have to be overcome in the study of the organic constituents of meteorites. Contamination by terrestrial biogenic organic matter is an ever-present concern and a wide variety of contaminant molecules have been isolated and identified including essential plant oils, derived from either biological sources or common cleaning products, and aliphatic hydrocarbons, most probably derived from petroleum-derived pollutants. Only 25% of the organic matter in carbonaceous chondrites is amenable to extraction with organic solvents; the remainder is present as a complex macromolecular aromatic network that has required the development of analytical approaches that can yield structural and isotopic information on this highly complex material. Stable isotopic studies have been of paramount importance in understanding the origins of meteoritic organic matter and have provided evidence for the incorporation of interstellar molecules within meteoritic material. Extending isotopic studies to the molecular level is yielding new insights into both the sources of meteoritic organic matter and the processes that have modified it. Organic matter in meteorites is intimately associated with silicate minerals and the in situ examination of the relationships between organic and inorganic components is crucial to our understanding of the role of asteroidal processes in the modification of organic matter and, in particular, the role of water as both a solvent and a reactant on meteorite parent bodies

    Thermochemolysis of the Murchison meteorite: identification of oxygen bound and occluded units in the organic macromolecule

    Get PDF
    An organic macromolecular residue, prepared from the Murchison meteorite by treatment with hydrofluoric and hydrochloric acids, was subjected to online thermochemolysis with tetramethylammonium hydroxide (TMAH). The most abundant compound released by thermochemolysis was benzoic acid. Other abundant compounds include methyl and dimethyl benzoic acids as well as methoxy benzoic acids. Short chain dicarboxylic acids (C4–8) were also released from the organic macromolecule. Within the C1 and C2 benzoic acids all possible structural isomers are present reflecting the abiotic origin of these units. The most abundant isomers include 3,4-dimethylbenzoic acid (DMBA), 3,5-DMBA, 2,6-DMBA and phenylacetic acid. Thermochemolysis also liberates hydrocarbons that are not observed during thermal desorption; these compounds include naphthalene, methylnaphthalenes, biphenyl, methylbiphenyls, acenaphthylene, acenaphthene, phenanthrene, anthracene, fluoranthene and pyrene. The lack of oxygen containing functional groups in these hydrocarbons indicates that they represent non-covalently bound, occluded molecules within the organic framework. This data provides a valuable insight into oxygen bound and physically occluded moieties in the Murchison organic macromolecule and implies a relative order of synthesis or agglomeration for the detected organic constituents
    • …
    corecore